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1. Intoduction 

Atomic force microscopy is extremely useful in the study of surface defects in crystals by 
providing topographical data at the nanometric scale. With the aide of advanced statistical 
analysis, nanoscale surface data acquired through atomic force microscopy can also be 
utilized to predict behavior at the macroscale. The behavioral model presented is the 
measure of shock sensitivity required to produce detonation of explosive crystal test 
samples. The surfaces studied were of 7 different varieties of (RDX) crystalline explosives 
from 5 manufacturers (Doherty & Watts, 2008). It has been speculated that particle size, 
crystal defects, density and crystal morphology may play a role in the shock sensitivity of 
RDX and there have been numerous attempts to quantify and/or link particular features of 
the explosive particles to the shock sensitivity behavior of their larger compositions 
(Doherty and Watts, 2008). The shock sensitivity data were obtained from model test 
compositions prepared as polymer-bonded explosives using hydroxy-terminated 
polybutadiene (HTPB) as the binder. The shock sensitivity, measured in a gap test, is the 
shock required to produce a detonation of the test composition 50% of the time. Varied card 
thicknesses of poly(methyl-methacrylate) (PMMA) are used to attenuate the initiating 
charge entering the sample tube. The shock pressure (GPa) impacting the sample is 
determined by the number of cards. A small number of cards translate to a larger shock and 
thus a less shock sensitive sample.  

2. Experimental 

The AFM analysis of the RDX crystal surfaces was performed using a Multimode V 
scanning probe microscope (Veeco Metrology Group). The instrument was operated in 
Tapping Mode, where topographical analysis is performed with minimal contact of the 
surface. The crystal topography is mapped by lightly tapping the surface with an oscillating 
probe tip. The sample surface topography modifies the cantilever’s oscillation amplitude 
and the topography image is obtained by monitoring these changes while closing the z 
feedback loop to minimize them. A first order algorithm supplied by Veeco was used to 
“flatten” the images. The flatten command modifies the scanned image removing tilt and 
thus leveling the image. 
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A variety of surface features were observed including edge and screw dislocations, voids, 
cracks, peaks, valleys, plateaus, etc. Examples of images acquired of the RDX particles 
surfaces are shown in Fig. 1-7. They are presented as amplitude images since they more 
easily display the shape of the sample surface. The amplitude image is equivalent to a map 
of the slope of the sample. The z-scale shows the tip deflection as it encountered sample 
topography. The amplitude image on harder samples better highlights the edges of features 
while on softer samples it can depict subsurface features better than the topography image. 

The root mean square (RMS) calculation (R) of the surface imagery acquired in height 
mode was used to determine the roughness and to quantify the different surface 
topologies. The roughness was calculated by finding the median surface height for the 
scanned image and then evaluating the standard deviation. The equation for determining 
the surface roughness is  
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where μ is the mean value of the height, z, across in-plane coordinates (x,y): 
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The necessity to add objectivity to the consistency across the surface is demonstrated by Fig. 
1-7. Although the side by side images obtained are from the same particle they demonstrate 
two very different surface morphologies and/or different roughness measurements.  

 
Fig. 1. AFM scan images obtained from the same particle of material I. A roughness 
measurement of 18.9 nm was obtained for image on the left while 29.6 nm was obtained for 
image on the right. 
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Fig. 2. AFM scan images obtained from the same particle of material II. A roughness 
measurement of 9.81 nm was obtained for image on the left while 24.4 nm was obtained for 
image on the right. 

 

 

 
Fig. 3. AFM scan images obtained from the same particle of material III. A roughness 
measurement of 9.31 nm was obtained for image on the left while 21.5 nm was obtained for 
image on the right. 
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Fig. 4. AFM scan images obtained from the same particle of material IV. A roughness 
measurement of 5.05 nm was obtained for image on the left while 20.9 nm was obtained for 
image on the right. 

 

 

 
Fig. 5. AFM scan images obtained from the same particle of material V. A roughness 
measurement of 1.07 nm was obtained for image on the left while 3.7 nm was obtained for 
image on the right. 
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Fig. 6. AFM scan images obtained from the same particle of material VI. A roughness 
measurement of 1.07 nm was obtained for image on the left while 3.7 nm was obtained for 
image on the right. 

 

 

 
Fig. 7. AFM scan images obtained from the same particle of material VII. A roughness 
measurement of 2.9 nm was obtained for image on the left while 4.69 nm was obtained for 
image on the right. 
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3. Statistical analysis 

Statistical analysis can generally be subdivided into three steps or sections. The first step 
involves obtaining the data and constructing the relevant variables. The second involves 
some basic statistical investigations, such as correlations between the variables or in the case 
of multiple sample comparisons, hypothesis testing. Often the first two steps may be 
sufficient, but in the event that the research requires an understanding of the exact 
relationships between the various variables, the quantitative effects one variable has on 
another, a further step in the form of a regression analysis becomes necessary. The 
discussion below outlines the steps encompassed in the statistical analysis. 

3.1 Data and the construction of variables 

The AFM data consist of individual 1 µm2 surface scans obtained from seven different RDX 
materials. Each scan produces one observation that contains the information on the actual 
surface variation, roughness of the area of the scan, R (RMS). The scans were taken from 
seven different materials, however, each material is comprised of particles, and differences 
between particles of the same material in terms of their surface characteristics are possible. 
Therefore, five particles of each material were selected at random and 5-6 scans of different 
regions of the surface of each particle were acquired.  

This approach allows modeling of the surface heterogeneity between the seven materials in 
three possible ways: the average measure of observed surface roughness, the variability 
between the particles, and lastly the variation in the surface roughness across the surface of 
a particle. For further discussion see Bellitto & Melnik (2010) and Bellitto et al (2010). 

Multiple scans per particle allow the construction of two measures of the surface 
characteristics of the particle, the particle average (Rpm),  
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where the subscript p refers to the particle and m to the material. The subscript s refers to 
the individual scan and n is the number of scans per particle. Thus, Rpm represents the 
average value of all scans for that particle and Spm represents the standard deviation of 
roughness for that particle. These statistics are listed in Table 1. 

Shown in Table 1 are the particle average (Rpm) and the particle standard deviation (Spm) 
values. These are limited to describing the individual particle characteristics but they can be 
used to construct variables describing the material characteristics. Rpm can simply be 
averaged to construct the average measure of observed surface roughness of the material 
(Rm), 
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  Particle Level Data Material Level Data 
Material Particle Rpm Spm Rm Sm Sm 

I 1 19.100 6.531 18.270 4.131 5.929 

 2 14.617 1.994    

 3 10.128 3.229    

 4 23.467 3.704    

 5 24.040 5.198    

II 1 10.518 7.730 8.425 4.853 6.120 

 2 18.268 7.614    

 3 5.062 4.247    

 4 3.653 2.417    

 5 4.624 2.255    

III 1 13.794 8.236 16.040 11.033 7.457 

 2 7.014 3.723    

 3 25.006 16.742    

 4 22.335 17.346    

 5 12.052 9.121    

IV 1 11.255 12.770 10.565 9.807 4.310 

 2 4.872 3.160    

 3 10.220 11.350    

 4 16.912 17.749    

 5 9.564 4.007    

V 1 2.000 1.619 5.322 3.622 3.165 
 2 6.207 1.698    
 3 10.244 7.900    
 4 3.396 4.034    
 5 4.762 2.856    

VI 1 15.740 4.633 10.067 3.612 4.784 
 2 13.982 3.868    
 3 7.934 2.370    
 4 8.753 5.830    
 5 3.923 1.358    

VII 1 10.335 3.462 6.150 2.877 5.278 
 2 5.120 2.169    
 3 12.820 7.432    
 4 1.482 1.041    
 5 0.994 0.281    

Table 1. Construction of Measures of Surface Roughness 
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where N represents the number of particles for the material. Similarly, the average measure 
of particle standard deviation can be constructed, 
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This simple average measure accounts for the average variability in the surface roughness 
across the particle surface.  

At this point two measures of surface roughness and its variability have been constructed. 
One is the particle average level for the material (Rm) and the other is the average variation 
in surface roughness across the particle surface (Sm). To quantify the variation between 
particles the standard deviation of the distribution of Rpm, is introduced and expressed as 
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This measure enables us to account for the heterogeneity between the various particles of 
the material.  

Cyclotetramethylene-tetranitramine (HMX), a major impurity within RDX, has been 
reported to be as high as 17% (Doherty & Watts, 2008). Table 2 provides a basic summary of 
the shock sensitivity of the seven materials and the mean % of HMX impurity. The HMX 
impurity is included since impurities can significantly alter the periodicity of a crystal and 
thus affect its surface roughness.  
 

Material Impurity 
(Mean % HMX) 

Sensitivity 
(GPa) 

I 7.36 4.2 
II 0.02 4.66 
III 0.03 2.21 
IV 8.55 3.86 
V 0.82 5.24 
VI 0.02 5.21 
VII 0.19 5.06 

Table 2. Impurity (%HMX) and shock sensitivity (GPa) of the materials used in our study.  

3.2 Basic comparison of the materials 

The average surface roughnesses of the materials, shown in Table 1, are first compared using 
analysis of variance (ANOVA). ANOVA is a statistical method used to compare population 
characteristics for multiple populations. ANOVA relies on three important assumptions, 
randomness and independence, normality, and homogeneity of variances. As discussed 
previously, our process of particle selection met the assumption of randomness. The Shapiro-
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Wilk test is employed to test for normality, to test if the underlying population can be assumed 
to be normally distributed. Table 3 presents the results of the test for the particle (Rpm) values 
for all seven samples (materials). The Shapiro-Wilk test fails to reject the null hypothesis of 
normality with p=0.10 for all of the samples. The null hypothesis assumes that the underlying 
population is normally distributed. If the test fails to reject the null hypothesis then that 
indicates that the assumption of the underlying population being normally distributed cannot 
be disproved. However, the Shapiro-Wilk test may at times be misleading and a visual 
examination of the data may be recommended. Interestingly enough, the F test used in 
ANOVA is relatively robust against the assumption of normality (Levine et al, 2010), but the 
assumption of homogeneity of variances is crucial to the validity of the test.  
 

Material W V z Prob>z 

I 0.921 0.929 -0.097 0.538 

II 0.828 2.032 1.107 0.134 

III 0.937 0.739 -0.379 0.648 

IV 0.952 0.565 -0.682 0.752 

V 0.946 0.634 -0.556 0.711 

VI 0.948 0.617 -0.585 0.721 

VII 0.897 1.218 0.273 0.392 

Table 3. Results of Shapiro-Wilk test 

The Levene test for homogeneity of variances is performed on the Rpm data and the groups 
are defined as the individual materials. The test compares multiple samples to determine if 
they are drawn from populations with equal variances. The value of the F statistic from the 
Levene test is 0.49367, while the critical value for the rejection of the null hypothesis of 
homogeneity of variances is 2.445259, the hypothesis of homogeneity of variances cannot be 
rejected by the test1. This enables us to perform the one way ANOVA on our Rpm data, 
grouped by their corresponding materials. 

The ANOVA method enables us to check if there is enough statistical evidence to reject the 
hypothesis that the Rm values of the seven materials are statistically not different from each 
other. The ANOVA output is presented in Table 4 and it shows that the hypothesis of equal 
Rm values is rejected by the data.  

The ANOVA results demonstrate that these materials differ substantially in terms of their 
particle average roughness.  

The focus of our research is to investigate a possible connection between the surface 
roughness and the shock sensitivity of the material. One simple way in which this 
connection can be examined is with the help of correlations, see Table 5. A clear negative 
correlation is observed between the measure of shock sensitivity (GPa) and the three 

                                                                 
1 In the event the Levene test rejected the null hypothesis, we would not be able to proceed with 
ANOVA and would have to use weaker testing techniques such as the Kruskal-Wallis test. For further 
discussion on the Levene test please see Levine et al (2010). 
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SUMMARY       

Groups Count Sum Average Variance   

I 5 91.352 18.2704 35.15459   

II 5 42.12567 8.425133 37.45042   

III 5 80.20038 16.04008 55.60776   

IV 5 52.823 10.5646 18.57295   

V 5 26.60883 5.321767 10.01659   

VI 5 50.33267 10.06653 22.88255   

VII 5 30.7508 6.15016 27.86016   

 

ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 705.2395 6 117.5399 3.964342 0.005398 2.445259 

Within Groups 830.1801 28 29.64929    

       

Total 1535.42 34     

Table 4. ANOVA of Rpm 

  %HMX Sensitivity Rm Sm 

      

Sensitivity  -0.181    

  -0.411    

      

Rm 0.448 -0.694   

  1.120 -2.155   

      

Sm 0.284 -0.896 0.452  

  0.662 -4.518 1.133  

      

Sm -0.170 -0.706 0.656 0.414 

  -0.386 -2.230 1.945 1.016 

Table 5. Correlations and their statistical significance 

measures of surface roughness of the material. This demonstrates that higher levels of 
surface heterogeneity are associated with lower levels of shock sensitivity.  
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Furthermore, all of the correlation coefficients between the surface characteristics measures 
and the shock sensitivity are statistically significant at or above the 90% level of significance. 
The statistical significance of the coefficients is determined by their corresponding t values. 
The t statistics for the significance test of the correlation coefficients are reported in italics 
under their corresponding coefficient and those that are significant at or above the 90% level 
are highlighted in bold font. The test statistic is obtained by the equation 

2
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t r
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where r is the correlation coefficient and Nm is the number of observations, which in this 
case is limited to seven, the number of materials used in this study. 

3.3 Regression analysis 

Regression analysis is designed to establish numerical relationships between the regressors, 
the independent variables and the dependent variable. A multivariable regression enables 
one to interpret the regression coefficients as partial derivatives of the dependent variable 
with respect to the regressor. Various regression techniques exist, but given the simple setup 
of our problem the most basic model, the Ordinary Least Squares, can adequately serve the 
purpose. For further discussion of various regression techniques see Greene (2003). The 
greater concern is the fact that the data is limited to only seven materials and seven 
observations of shock sensitivity. Generally, regression techniques require satisfying the 
Central Limit Theorem requirements which demand a higher level of observations. 
Unfortunately, the data is limited by the number of materials available in the study.  

The relationship between the surface roughness characteristics of the RDX materials and 
their shock sensitivity is investigated. A simple plot (Figure 8) shows that the shock 
sensitivity of the material is correlated with the level of surface roughness.  

 
Fig. 8. Plot of sensitivity of material versus average surface roughness (Rm) 

However, the plot also demonstrates that there is potential for heteroscedasticity in the data. 
Although heteroscedasticity does not create a bias in determining the regression coefficients 
themselves, the statistical significance of those coefficients becomes essentially unknown as 
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the standard errors become incorrectly computed by the basic OLS technique. To test for the 
presence of heteroscedasticity the Breusch-Pagan / Cook-Weisberg test is employed with 
the test statistics distributed as 2 with the degrees of freedom equal to the number of 
regressors. The Breusch-Pagan / Cook-Weisberg test for heteroscedasticity indicates 
2(1)=3.71, which corresponds to a probability > 2 = 0.0542. Thus, with a p value of less 
than 0.05 the test fails to reject the hypothesis of no heteroscedasticty, however with a p 
value near 0.1, the hypothesis of no heteroscedasticty is rejected. In an effort to be 
conservative in the analysis a value of p=0.1 is selected. The problem is further amplified by 
the fact that the sample size is very small (only seven observations of shock sensitivity), 
which reduces the robustness of the White/Huber estimator, a commonly used method for 
heteroscedasticity correction. As a result, the HCCM estimator known as HC3 is employed, 
this estimation technique was discussed by MacKinnon and White (1985), and was later 
shown to perform better than its alternatives in small samples, see Long and Ervin (2000). 

The test shows that the relationship between shock sensitivity and Sm does not exhibit any 
heteroscedasticity. The Breusch-Pagan / Cook-Weisberg test provides 2(1)=1.73, which 
corresponds to probability > 2 = 0.189. The test also finds no heteroscedasticity issues in the 
relationship between shock sensitivity and Sm 

The regression analysis in essence plots a best fit line through the data plot, a line that 
minimizes the sum of squares in the differences between the predicted line Y values and the 
actual Y values. Table 6 presents the regression output for several specifications. In all of the 
reported specifications the dependent variable is the level of sensitivity (GPa). The coefficients 
are reported along with their corresponding t values, included below the coefficient.  

Specification I simply examines the impact Rm has on the level of sensitivity of the material. 
This specification is equivalent to simply plotting the best fit line through the dataset in 
Figure 1 and is estimated using the HC3 method for the computation of errors. The model 
can be summarized by the following equation: 

5.998 0.153 mSensitivity R   

However, the statistical validity of that equation is limited. First, the goodness of fit is low. 
As measured by the adjusted R-squared, the model explains only about 8% of volatility in 
the level of sensitivity. Secondly, the coefficient on Rm is statistically significant at only 67%. 
All the subsequent specifications are estimated without the HC3 technique, as no evidence 
of heteroscedasticity was found (see the discussion above). 

Specification II models Sensitivity as a function of Sm. The level of statistical significance 
increases substantially. The coefficient on Sm is statistically significant at 99%, suggesting 
that the level of variation in surface roughness on the surface of the particle has a 
statistically significant impact on the level of shock sensitivity of the material. Furthermore, 
the overall goodness of fit of this specification has also improved. The adjusted R-squared 
suggests that model in Specification II explains over 76% of volatility in sensitivity. 

Specification III examines the relationship between Sm and sensitivity. The coefficient on 
Sm is statistically significant at 92%. The overall fit of the model is also weaker with the 
adjusted R-square being at 0.398.  



 
Predicting Macroscale Effects Through Nanoscale Features 187 

In Specification IV these three measures of surface characteristics are combined into one 
model. The test for heteroscedasticity failed to reject the hypothesis of homoscedasticity. 
Thus, the estimation is estimated without the HC3 technique. The overall explanatory 
power of the model improves substantially with the adjusted R-squared rising to 0.915. The 
coefficient on Rm is statistically significant at only 67% and the one on Sm is statistically 
significant at 84%, but the coefficient on Sm remains statistically significant at 98%. This 
specification includes multiple measures of surface characteristics that may in tern be 
correlated with each other. Although this has already been examined in the correlation table 
and no meaningful correlation was observed, this is verified with a computation of the 
variance inflation factor (VIF), see Table 7. The VIF computation confirms what the 
correlation table suggested, no multicollinearity problems in specification IV.  
 

  Dependent Variable = Sensitivity 

  Specification 

Ind. Vars. I II III IV V 
       

Rm -0.15   -0.04  

  1.07   1.14  
       

Sm  -0.29  -0.23  

   4.52  5.08  
       

Sm   -0.55 -0.23  

    2.23 1.87  
       

%HMX     -0.05 
      0.41 
       

Constant 6.00 6.02 7.26 7.31 4.47 

  5.31 14.34 5.41 14.38 8.39 
       

R-sq 0.48 0.80 0.50 0.96 0.03 
       

       

Adj. R-sq 0.08 0.76 0.40 0.92 -0.16 

Table 6. OLS Regression with Heteroscedasticity correction 

Variable VIF 1/VIF 
Rm 1.89 0.530049 
Sm 1.81 0.552178 
Sm 1.3 0.771688 

Table 7. Computation of Variance Inflation Factor.  

Specification IV can be written as a simple equation where each coefficient can be 
interpreted as a partial derivative: 
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7.308 0.042 0.225 0.233m m mSensitivity R S S      

The last specification examines the relationship between the level of impurity (%HMX) and 
sensitivity. The regression analysis demonstrates that there is no statistically significant 
relationship between these two variables. For further analysis of shock sensitivity and its 
determinants in RDX materials see Bellitto and Melnik (2010) and Bellitto et al (2010). 

4. Conclusion 

Atomic force microscopy can be used to obtain a large number of data observations at the 
nanometric level. These data can statistically be used to investigate and establish quantitative 
relationships between various variables. This work demonstrates that surface characteristics 
data obtained from topographical scans can be used in investigating the relationship between 
the shock sensitivity of the materials at the macroscale and their surface roughness 
characteristics at the nanoscale. Statistical analysis can be used not only to show that there is a 
statistical relationship, but with the help of regression techniques, can precisely estimate any 
such relationships. As demonstrated in this chapter, the surface roughness variation on the 
surface of the particle has a substantial negative impact on the shock sensitivity in RDX 
materials. A one unit increase in the average standard deviation (Sm) reduces the shock 
sensitivity by 0.225 GPa. The statistical analysis can also be used to demonstrate absence of any 
meaningful relationship. For instance, the results demonstrate that the level of HMX impurity 
does not impact the shock sensitivity in the studied RDX materials. 
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